
Arageli User’s Guide

Nina Gonova Andrey Kamaev Sergey S. Lyalin Nikolai Yu. Zolotykh

August 31, 2006

Contents

1 Introduction 2

2 Big Integers and Fractions 3
2.1 Creation, input, output . 3
2.2 Arithmetical and other operations 6
2.3 Basic algorithms involving integers 9

3 Vectors and Matrices 11
3.1 Creation, input, output . 11
3.2 Matrix algebra . 16
3.3 Entry-wise operations under vectors 17

3.3.1 Operations with entries of vectors 17
3.3.2 Entry-wise comparing of vectors 19
3.3.3 LCM and GCD for vector entries 20

3.4 Matrix operations . 21
3.4.1 Operations involving rows and columns 21
3.4.2 Other functions . 24

3.5 Linear algebra . 25
3.6 Smith’s normal diagonal form for integer matrix 29

4 Sparse Polynomials 31
4.1 Creation . 31
4.2 Input and output of polynomials 34
4.3 Arithmetic operations . 35
4.4 Polynomial properties . 36
4.5 Manipulating with internal representation 38
4.6 Other operations . 39
4.7 Basic algorithms . 41
4.8 Smith’s normal diagonal form for polynomial matrix 42
4.9 Example: matrix polynomial ↔ polynomial matrix conversion . . 44
4.10 Example: interpolating polynomial 44
4.11 Example: finding all rational roots 46

5 Modular arithmetic 50
5.1 Creation . 50
5.2 Linear algebra over finite field . 52

1

Chapter 1

Introduction

Arageli is a C++ template library for doing symbolic (i.e. exact or algebraic)
computation. It contains implementations of whole numbers of arbitrary length,
rational numbers (fractions), vectors, matrices, polynomials and different algo-
rithms involving these objects.

2

Chapter 2

Big Integers and Fractions

2.1 Creation, input, output
Arageli contains the implemetation of big integers, i.e. whole numbers of
arbitrary length. In order to use them one has to include the header file <ara-
geli/big_int.hpp>. These numbers are represented by class big int .

There are several constructors to create big int . The simplest one is

big int()

It creates big integer equaled to 0. Constructor

big int (const char *str)

creates big integer using its string decimal representation. There is a set of sup-
plementary constructors with the only parameter that may be a number of any
standard C++ integer class. In this cases the big integer with the appropriate
value will be created.

If a string representation of a big number is incorrect, exception Arageli ::big int ::incorrect string
will be ejected.

Arageli contains the implementation of rational numbers, i.e. fractions
of two integers: numerator and denomerator. They are represented as the
templated class rational<T>. The parameter of the template is the type of
numerator and denomerator. By default, they are big integers. In order to
work with rational numbers it’s necessary to include the header file <arageli/
rational.hpp>.

There are several constructors for rational numbers. Constructors

template<typename T = big int>
class rational< T > {

rational();
rational(const char *str);
. . .

};

have the same meaning as the appropriate constructors for big integers. The
decimal string representation for a rational number may have the form m/n,

3

with m being numerator, n being denominator, or simply m if the denominator
is 1.

Consider other constructors:

template<typename T = big int>
class rational< T > {

template<typename T1>
rational(const T1 &w);

rational(const T &u, const T &v);
. . .

};

The former creates the fraction with numerator equaled to w and the unit
denominator. The later creates the rational number u/v .

For input/output of big integers and rational numbers one can use standard
streams std ::istream и std ::ostream. Operators >> and << are implemented.

Functions numerator() and denominator() return what you expect. Func-
tion normalize() reduces the fraction by dividing its numerator and demomi-
nator by their GCD. Function is normal() checks whether the fraction can be
reduced or not. Normally you needn’t to call normalize() because Arage-
li always reduces all fractions. The only case when you usually have to call
normalize() is after you have changed numerator or/and denominator directly
by means of functions numerator() and denominator().

Consider the following example.

Listing BigIntRationalCreation.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

// Default constructor
big int zero;
cout << "By default, constructor creates zero = "

<< zero << endl ;

// Define the big int by a string
big int big number =

"101100111000111100001111100000111111000000";
cout << "Really big integer: " << big number << endl ;

// Input from a keyboard is analogous to defining by a string
big int number from input ;
cout << "Input a big integer: ";
cin >> number from input ;
cout << number from input << endl ;

// Now create a rational number

4

file:../bin/BigIntRationalCreation.cpp

rational<> rat zero;
cout << "For rational numbers zero = "

<< rat zero << endl ;
cout << "Its numerator is "

<< rat zero.numerator() << endl ;
cout << "Its demonimator is "

<< rat zero.denominator() << endl ;

// Rational number can be defined by a string
rational<> fraction = "705/32768";

// Input from a keabord is easy
rational<> rational number from input ;
cout << "Input any rational number: ";
cin >> rational number from input ;
cout << rational number from input << endl ;

// You can assign integer numbers to rational variables
rational<> rational integer number = number from input ;
cout << "The following rational number is whole: "

<< rational integer number << endl ;

// You can specify numerator and denominator
rational<> number pi(22, 7);
cout << "Pi approximately is " << number pi << endl ;
// You can assign integer and rational numbers to floating point variables
double floating point pi = number pi ;
cout << "The following is rough approximation of pi: "

<< setprecision(14) << floating point pi << endl ;
// pi = 3.141592653589793238462643383279502884197
rational<> pi(355, 113);
cout << "More precisely Pi is " << pi << " ˜ "

<< setprecision(14) << double(pi) << endl ;

// You can get an access to numerator and denominator
// of a rational number and you can change them.
// After that perhaps the fraction must be reduced

fraction.numerator() += number from input ;
cout << "Reducing the fraction: " << fraction << " = ";

fraction.normalize();
cout << fraction << endl ;

return 0;
}

The results of the program follow.

By default, constructor creates zero = 0
Really big integer: 101100111000111100001111100000111111000000
Input a big integer: 27082006

5

For rational numbers zero = 0
Its numerator is 0
Its demonimator is 1
Input any rational number: 442/721
The following rational number is whole: 27082006
Pi approximately is 22/7
The following is rough approximation of pi: 3.1428571428571
More precisely Pi is 355/113 ~ 3.141592920354
Reducing the fraction: 27082711/32768 = 27082711/32768

Some other functions involving big integers and rational numbers will be
discussed below.

2.2 Arithmetical and other operations
Operators +, −, *, / do with big integers and rational numbers what you expect:

• + performs addition; also, it is a unary plus;

• − performs subtraction or negation;

• * performs multiplication;

• / performs division; for two big integer operands it returns the integer
part of the result;

• % finds the residue after the division of two big integers.

In dividing negative integers the agreements of the standard C++ (not math-
ematical rules) are used, for example, (-10)/3 = -3, 10/(−3) = −3, (−10)%3 = -1,
10%(-3) = -1 etc.

An attept to divide be zero leads to ejecting the exception Arageli ::divizion by zero.
Each of mentioned operators has its combined form: +=, −=, *=, /=, %=.
Standard comparing operators <, >, <=, >=, ==, != are defined.
We remark that all the arithmetical and comparing operators mentioned

above can involve operands of different types.
For big integers you can also use prefix and postfix operators ++, −− that

have the same meaning what they have for standard integer types such as int .
For raising to a power there is function power defined in <arageli/powerest.hpp>.

Also this file contatins the definition of function square for squaring and the fol-
lowing functions:

template<class T1, class T2, class Q, class R>
void divide(const T1 &a, const T2 &b, Q &q, R &r)

template<class T1, class T2, class Q, class R>
void prdivide(const T1 &a, const T2 &b, Q &q, R &r)

The former method computs a quotient q and a remainder r after the division
a/b such that operators / and % would return. The later method computes
a quotient q and a remainder r after the division a/b such that a = bq + r,
0 ≥ r ≤ |b| (this corresponds to usual mathematical agreements).

6

Big integers can be converted to standard numerical types by means of op-
erators such as int , double etc. Rational number can be converted to decimal
fraction by means of operator double.

As we have already mentioned functions numerator() and denominator()
give us an access to numerator and denominator corresponingly. Function
normalize() normalizes a fraction. Function is normal() checks whether the
fraction is reducible or not. Function is integer() checks whether the fraction is
integer number. Function inverse() swaps the numerator and denominator.

You can operate directly with bits of a big integer. Function length() returns
its length in bits. An access to a particular bit is carried out by means of brackets
[]. The lowest bit has the index 0. The highest one has the index length − 1.
You can modify bits lower than the highest one. Operators << and >> shift
big integers on the specified number of bits.

Functions is even() and is odd() check whether the number is even or odd.
For rational numbers and big integers the following functions are imple-

mented.

• cmp compares two numbers; returns +1 if the first argument is more than
the second one; 0 if they are equaled to each other; −1 if the second
argument is less than the second one;

• sign() returns the sign of the number;

• is null() checks whether the number is 0;

• is unit() checks whether the number is 1;

• is opposite unit() checks whether the number is −1;

• abs returns the absolute value of the number;

• swap swaps two numbers.

For generating pseudo-random integers you can use the following functions

static big int random with length(size t len)
static big int random with length or less(size t len)

The former function returns the number whose length (in bits) is presisely len.
The later function returns a random number with length at least len.

Consider the following example.

Listing BigIntRationalOperations.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

// Operations with big int can be performed
// as with standard C++ types.

// You can mix in one operation operands of different types

7

file:../bin/BigIntRationalOperations.cpp

big int day seconds = (big int(60) * 60) * 24;
cout << "A day contains " << day seconds <<" seconds"<< endl ;
big int year seconds = day seconds * 365;
cout << "A year contains " << year seconds <<" seconds"<< endl ;
big int leap year seconds = year seconds + day seconds;
cout << "But a leap year contains " << leap year seconds

<< " seconds" << endl ;

if((big int(12345678987654321) % big int(111)).is null())
{

cout << "12345678987654321 is divisible by 111" << endl ;
cout << "The quatient is "

<< big int(12345678987654321) / big int(111) << endl ;
}
else

cout << "12345678987654321 is not divisible over 111" << endl ;

big int first big number = power(big int(23), 32);
big int second big number = power(big int(32), 23);
if(first big number < second big number)

cout << "We stated that 23^32 < 32^23" << endl ;
else

if(first big number > second big number)
cout << "We stated that 32^23 < 23^32" << endl ;

else
if(first big number == second big number)

cout << "Too good to be true!" << endl ;
else

cout << "It’s very lovely!" << endl ;

cout << "2^64 = " << (big int(1) << 64) << endl ;

// Working with rationals is yeasy too
rational<> sqrt 2 = "1/2";
for(int i = 0; i < 10; i++)

sqrt 2 = 1 / (2 + sqrt 2);
// You can also use (sqrt 2 += 2).inverse();
sqrt 2 += 1;
cout << "sqrt(2) is approx. " << sqrt 2 << endl ;
rational<> two = square(sqrt 2);
if(two.is integer())

cout << "It couldn’t be further from the truth";
cout << "(" << sqrt 2 << ")^2 = " << two << endl ;
cout << two << " is approx. "

<< setprecision(16) << double(two) << endl ;

return 0;
}

8

The results of the running of the program follows:

A day contains 86400 seconds
A year contains 31536000 seconds
But a leap year contains 31622400 seconds
12345678987654321 is divisible by 111
The quatient is 111222333222111
We stated that 32^23 < 23^32
2^64 = 18446744073709551616
sqrt(2) is approx. 19601/13860
(19601/13860)^2 = 384199201/192099600
384199201/192099600 is approx. 2.000000005205633

2.3 Basic algorithms involving integers
Let’s consider some more functions involving big integers:

• template<typename T>
T intsqrt (const T &a);
finds the greatest integer whose square does not exceed a;

• template<typename T>
T inverse mod (const T &a, const T &n);
finds the inverse to a modulo n;

• template<typename T>
T factorial (const T &a);
finds factorial of a.

If you want to use these functions you have to include file <arageli/intalg.hpp>.
Function lcm and gcd returns the least common multiplier and the greates

common divider corresponingly for two integers. Function euclid bezout also
returns the Bezout’s coefficients. These functions is described in <arageli/
gcd.hpp>.

In order to know whether a number is prime or composite you can use func-
tions is prime and is composite. Functions next prime and prev prime return
the next and previous prime munbers correspondingly. Function factorize finds
all prime factors of the only argument. The result will be returned in a vector
containing all prime factors. All these functions choose the approprite algo-
rithm. To use them one have to include <arageli/prime.hpp>.

Consider the following example:

Listing BigIntRationalFunctions.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

9

file:../bin/BigIntRationalFunctions.cpp

// Compute a factorial and a root
big int f = factorial(big int(16));
cout << "16! = " << f << endl ;
big int sf = intsqrt(f);
cout << "Integer part of sqrt(16!) = " << sf << endl ;
cout << sf << "^2 = " << sf *sf << endl ;

// Find the first composite Fermat’s number
big int pow = 1;
big int fermas number ;
cout << "Fermat’s numbers: " << endl ;
while(is prime(fermas number = (big int(1) << pow) + 1))
{

cout << fermas number << " is prime" << endl ;
pow <<= 1;

}
cout << fermas number << " is composite" << endl ;

// Find its fractorisation
vector<big int> factorization;
factorize(fermas number, factorization);
cout << fermas number << " = ";
output list(cout, factorization, "", "", "*");

return 0;
}

The results follow:

16! = 20922789888000
Integer part of sqrt(16!) = 4574143
4574143^2 = 20922784184449
Fermat’s numbers:
3 is prime
5 is prime
17 is prime
257 is prime
65537 is prime
4294967297 is composite
4294967297 = 641*6700417

10

Chapter 3

Vectors and Matrices

3.1 Creation, input, output
In Arageli there is a possibility create vectors and matrices with entries of
arbitrary type. In this chapter we’ll consider examples involving vectors and
matrices with integer and rational entries. In the next chapter devoted to poly-
nomials examples involving vectors and matrices with polynomial entries and
polynomials with matrix coefficients will be examined.

If you want to use vectors or/and matrices you have to include <arageli/
vector.hpp>or/and <arageli/matrix.hpp>correspondingly.

There is a few constructor of vectors and matrices. The simplest of them
are

template<typename T, bool REFCNT = true>
class matrix< T, REFCNT > {

vector();
. . .

};

and

template<typename T, bool REFCNT = true>
class matrix< T, REFCNT > {

matrix ();
. . .

};

They creates empty objects: a vector with length 0 and a 0 × 0 matrix corre-
spondingly.

You can use more advanced constructors for creating vectors and matrices
of specified sizes and initiated by specified values. By default these values are
0’s. For each kind of the constructor there is a corresponding function assign
that plays the same role but it can be called at every moment.

For example, constructor

matrix<int> A(3, 8, diag);

11

create the integer matrix

A =

 8 0 0
0 8 0
0 0 8

 .

In this example the first parameter is the order of the matrix. The last parameter
of the constructor defines the kind of a matrix. Here it is diagonal. The second
parameter is the value which the matrix will be populated by (in this example
only diagonal entries).

Consider an example illustrating different ways to construct vectors and
matrices

Listing VectorMatrixCreation.cpp

#include <iostream>
#include <iomanip>
#include "arageli/arageli.hpp"

using namespace std ;
using namespace Arageli ;

int main ()
{

// Let’s create vector with rational entries
Arageli::vector<rational<> > a = "(21/3, 3, 4)";
cout << "Vector defined by its string representation = " << endl ;
output aligned(cout, a);
cout << endl ;

// Create a vector populated by a value
Arageli::vector<int> b(3, 777, fromval);
std::cout << "Vector populated by a value = " << endl ;
output aligned(cout, b);
cout << endl ;

// Create a zero vector
vector<double> c(3);
std::cout << "A zero vector = " << endl ;
output aligned(cout, c);
cout << endl ;

// Create matrix with rational entries
matrix<rational<> > A = "((21/3, 3, 4), (3335, 6/5, 75), (81, 9, 10/7))";
cout << "Matrix defined by its string representation = " << endl ;
output aligned(cout, A);
cout << endl ;

// Create 3x3 identity matrix
matrix<rational<> > E (3, eye);
cout << "Identity matrix = " << endl ;

12

file:../bin/VectorMatrixCreation.cpp

output aligned(cout, E);
cout << endl ;

// Create 3x3 square matrix populated by a value
matrix<sparse polynom<rational<> > >

B(3, sparse polynom<rational<> >("3/2*x^2"), fromval);
std::cout << "Square matrix populated by a value = " << endl ;
output aligned(cout, B);
cout << endl ;

// Create 3x4 matrix
matrix<double> C (3, 4, fromsize);
std::cout << "Rectangle matrix = " << endl ;
output aligned(cout, C);
cout << endl ;

// Create char matrix!
matrix<char> D(3, ’*’, fromval);
std::cout << "Char matrix = " << endl ;
output aligned(cout, D);

return 0;
}

Results follow:

Vector defined by its string representation =
	7	
	3	
	4	

Vector populated by a value =
	777	
	777	
	777	

A zero vector =
	0	
	0	
	0	

Matrix defined by its string representation =
	7 3 4	
	3335 6/5 75	
	81 9 10/7	

Identity matrix =
	1 0 0	
	0 1 0	
	0 0 1	

13

Square matrix populated by a value =
	3/2*x^2 3/2*x^2 3/2*x^2	
	3/2*x^2 3/2*x^2 3/2*x^2	
	3/2*x^2 3/2*x^2 3/2*x^2	

Rectangle matrix =
	0 0 0 0	
	0 0 0 0	
	0 0 0 0	

Char matrix =
	* * *	
	* * *	
	* * *	

For input of vectors and matrices one can use standard streams std ::istream.
Operator >> is implemented. Entries of a vector must be enclosed in paren-
theses and separated by commas. Entries of a matrix also must be enclosed in
parentheses and must be written in row-wise order. Each order is written as a
vector, i.e. it must be in parentheses and entries is separated by commas. Rows
also must be separated by commas.

For vectors/matrices output several possibilities are provided.

1. Simple output s << A where s is a output stream; A is a vector or a
matrix. The same format as in operator >> is used.

2. Prettier output using function output aligned (for more information see
examples below and refences).

3. Output in LATEXformat (for more information see examples below and
refences).

The following functions deal with the sizes of vectors and matrices:

• ncols() returns the number of columns in the matrix;

• nrows() returns the number of rows in the matrix;

• size() for a vector: returns its length; for a matrix: returns the product
of the number of columns and the number of rows;

• length() for a vector: returns the length of the vector; for a matrix: returns
the maximum of the number of columns and the number of rows.

Consider the following example.

Listing VectorMatrixInputOutput.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

14

file:../bin/VectorMatrixInputOutput.cpp

int main(int argc, char *argv [])
{

vector<rational<> > b;
matrix< rational<> > A;

// Let’s define vector b
b = "(2/3, -1/5, 4)";

// Print b
cout << "b (operator <<) = " << b << endl ;

// Prettier output
cout << "b (output_aligned) = " << endl ;
output aligned(cout, b, "| | ", " | |");

// Output using latex notation
cout << "b (output_latex) = " << endl ;
output latex (cout, b);
cout << endl ;

cout << "Size of b = " << b.size() << endl ;
cout << "Length of b = " << b.length() << endl ;

// Now let’s define matrix A
A = "((1/2, 2/3), (-5/7, 6), (8/11, -9/2))";

// Print A
cout << "A (operator <<) = " << A << endl ;

// Prettier output
cout << "A (output_aligned) = " << endl ;
output aligned(cout, A, "| | ", " | |", " ");

// Output using latex notation
cout << "A (output_latex) = " << endl ;
output latex (cout, A);
cout << endl ;

cout << "Cols in A = " << A.ncols() << endl ;
cout << "Rows in A = " << A.nrows() << endl ;
cout << "Size of A = " << A.size() << endl ;
cout << "Length of A = " << A.length() << endl ;

return 0;
}

Results follow:

b (operator <<) = (2/3, -1/5, 4)
b (output_aligned) =

15

	2/3	
	-1/5	
	4	
b (output_latex) =		
$\left(2/3,-1/5,4\right)$		
Size of b = 3		
Length of b = 3		
A (operator <<) = ((1/2, 2/3), (-5/7, 6), (8/11, -9/2))		
A (output_aligned) =		
	1/2 2/3	
	-5/7 6	
	8/11 -9/2	
A (output_latex) =
$\left(\begin{tabular}{cc}$1/2$ & $2/3$ \\[3pt] $-5/7$ & 6 \\[3pt] $8/11$ & $-9/2$\end{tabular}\right)$
Cols in A = 2
Rows in A = 3
Size of A = 6
Length of A = 3

3.2 Matrix algebra
If the operands of operators +, −, * are vectors or matrices then these operators
perform matrix operations. If A and B are matrices of the same size then A+B
and A−B are their sum and their difference correspondingly. If the number of
column in A is equal to the number of rows in B then A ∗ B is their product.
For each operators +, −, * there is the corresponding operator combined with
assignment.

If A is a matrix and b is a vector then A∗b will be interpreted as multiplication
of A to the column b, while b ∗A will be considered as multiplication of the row
b to matrix A. In the both cases (if the sizes of operands are consistent) the
result will be a vector.

Binary operations +, −, *, /, % for two vectors of the same length are entry-
wise. For example, a+ b is the vector of the same length as a and b with entries
equaled to the sum of corresponding entries in a and b.

Standard comparing operators <, >, <=, >=, ==, != also are supported.
For vectors and matrices they implement lexicographic comparing. As an ex-
ample consider operator < applying for two vectors a and b. Let a be of length
m and b be of length n. We will say that a < b iff

1. in simultaneous element-wise viewing of these vectors from its beginning to
the end the first pair of non-coincident entries ai, bi satisfies the inequality
ai < bi, or

2. there are no pairs of non-coincident entries and m < n.

Let matrix A have m1 rows and n1 columns, B have m2 rows and n2 columns.
We will say that A < B iff

1. m1 < m2, or

2. m1 = m2 и n1 < n2, or

16

3. m1 = m2, n1 = n2, and matrix A unrolled in row-wise order is lexico-
graphic less than B represented.

Consider the following example.

Listing VectorMatrixArithmetic.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

typedef rational<> Q ;

int main(int argc, char *argv [])
{

matrix<Q> A, B ;
vector<Q> c, d, res;
Q alpha;
int beta;

A = "((-1/2, 3/4), (-2/3, 5), (1/7, -5/2))";
B = "((3/4, 1/6, -7/8), (5/2, 2/5, -9/10))";

c = "(1/4, -4/15, 5)";
d = "(-2/3, -1, 4)";

alpha = Q(1, 120);
beta = −2;

res = ((A*B)*c − d*alpha)/beta;
cout << "Result:" << endl ;
output aligned(cout, res);

return 0;
}

Results follow:

Result:
	3113/7200	
	3689/432	
	-23477/5040	

The description of entry-wise comparing is in the next section.

3.3 Entry-wise operations under vectors

3.3.1 Operations with entries of vectors
We recall that binary operations +, −, *, /, % for vectors of the same length
are entry-wise. For example, a + b is the vector of the same length as a and b
with entries equaled to the sum of corresponding entries in a and b.

17

file:../bin/VectorMatrixArithmetic.cpp

Access to i-th entry of a vector a can be obtained by means of brackets:

b[k]

We remark that the numeration of entries begins with index 0.
Consider functions which are used for inserting, erasing and swapping entries

in a vector.

• iterator insert(size type pos, const T &val)
inserts new entry val at the position pos.

• iterator insert(size type pos, size type n, const T &val)
inserts n new entries with value val beginning with the position pos.

• void push back(const T &val)
inserts new entry val in the end of the vector.

• void push front(const T &val)
inserts new entry val in the beginning of the vector.

• iterator erase(size type pos)
deletes an entry at position pos.

• void erase(size type pos, size type n)
deletes n entries beginning with position pos.

• template<typename T2>
void remove (const T2 &v)
deletes all entries with value v .

• void swap els (size type xpos, size type ypos)
swaps entries with indexes xpos и ypos.

An access to the entries of vectors can be obtained by means of iterators.
For detailes see references.

Consider the following example:

Listing VectorEntries.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

vector<int> a = "(3)";
int x = a[0];

cout << "a = " << a << endl ;
cout << "x = " << x << endl ;

// Let’s insert new entries
a.push front(1);

18

file:../bin/VectorEntries.cpp

a.push back(5);
a.insert(1, 2, x);
cout << "a (after inserting new entries) = " << a << endl ;

// Now let’s change the middle entry
int m index = (a.size())/2;
a[m index] = −1;
cout << "a (after changing the middle entry) = " << a << endl ;

// Remove all entries equaled to x
a.remove(x);
cout << "a (after removing all entries equaled to x) = "

<< a << endl ;

// Swap the first and last entries
a.swap els(0, a.size() − 1);
cout<<"\na (after swapping the first and the last entries) = "

<< a << endl ;

return 0;
}

Results follow:

a = (3)
x = 3
a (after inserting new entries) = (1, 3, 3, 3, 5)
a (after changing the middle entry) = (1, 3, -1, 3, 5)
a (after removing all entries equaled to x) = (1, -1, 5)

a (after swapping the first and the last entries) = (5, -1, 1)

3.3.2 Entry-wise comparing of vectors
As we have alredy mentioned in Arageli in addition to lexicografic comparing
functions there are entry-wise comparing functions. These can be used only in
the case if the vectors are of the same length.

Below there is a list of functions for entry-wise comparing. Functions names
show the relationship of the functions with corresponding functions for scalars.

• each cmp

• each sign

• each is positive

• each is negative

• each less

• each greater

19

• each lessequal

• each greater equal

• each equal

• each not equal .

Each of these functions returns a vector whos entries are values returned by
the corresponding scalar function applying to the pair of corresponding entries
(or to the only entry if the scalar function has one parameter).

For example, each cmp(a, b) returns a vector c such that c[i] = cmp(a[i], b[i]),
while each is positive(a) returns vector c such that c[i] = is positive(a) etc.

If it is necessary to determine whether all entries of a vector satisfy some
condition or all pairs of corresponding entries is in specific relation one can use
one of the following fuctions:

• all is positive

• all is negative

• all less

• all greater

• all less equal

• all greater equal

• all equal

• all not equal .

All these functions return true iff the condition is true for all pairs of corre-
sponding entries in two parameters of the function or for all entries of the only
parameter.

3.3.3 LCM and GCD for vector entries
In Arageli there are functions lcm and gcd that find LCM and GCD for entries
of a vector as well as for all pairs of corresponding entries in two vectors. In
the later case the parameters must have the same length and the result is the
vector of the same length. We recall that in Arageli any binary operation
under vectors is entry-wise.

If you want to use lcm or/and gcd you have to include <arageli/gcd.hpp>.
Consider the following example.

Listing VectorLCMGCD.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])

20

file:../bin/VectorLCMGCD.cpp

{

vector<int> a, b;
a = "(4, 6, 16, 8)";
b = "(2, 3, 8, 6)";

cout << "a = " << a << endl ;
cout << "b = " << b << endl ;

cout << "GCD for entries in a = " << gcd(a) << endl ;
cout << "LCM for entries in b = " << lcm(b) << endl ;

cout << "GCD for a and b = " << gcd(a, b) << endl ;
cout << "LCM for a and b = " << lcm(a, b) << endl ;

return 0;
}

Results follow:

a = (4, 6, 16, 8)
b = (2, 3, 8, 6)
GCD for entries in a = 2
LCM for entries in b = 24
GCD for a and b = (2, 3, 8, 2)
LCM for a and b = (4, 6, 16, 24)

3.4 Matrix operations

3.4.1 Operations involving rows and columns
You can perform various operations under matrices such as inserting/deleting
rows/columns, their multiplication/division by a scalar, swapping rows/columns
etc.

Consider some of them:

• void insert row (size type pos, const T &val)
The function inserts in the matrix a new row populated by value val at
the position pos. All other rows shifts down.

• template<typename T1, bool REFCNT1>
void insert row (size type pos,

const vector< T1, REFCNT1 > &vals)
The fuction inserts in the matrix a new row formed by entries in vals at
the position pos.

• void insert rows (size type pos, size type n, const T &val)
The function inserts in the matrix n new rows populated by value val ,
beginning with position pos.

21

• template<typename T1, bool REFCNT1>
void insert rows (size type pos, size type n,

const vector< T1, REFCNT1 > &vals)
The function inserts in the matrix n new rows each of them is formed by
enties in vals, beginning with position pos.

• void erase row (size type pos)
The function deletes a row at position pos. All other rows shift up.

• void erase rows (size type pos, size type n)
The function deletes n rows, beginning with position pos.

• void swap rows (size type xpos, size type ypos)
The function swaps two rows at positions xpos and ypos.

• template<typename T1>
void mult row (size type i, const T1 &x)
The function multiplyes the i -th row by x .

• template<typename T1>
void div row (size type i, const T1 &x)
The function divides the i -th row by x .

• void add rows (size type i, size type j)
The function adds to the i -th row the j -th row.

• void sub rows (size type i, size type j)
The function subtracts from the i -th row the j -th row.

• template<typename T2>
void addmult rows (size type i, size type j, const T2 &y)
The function adds to the i -th row the j -th row multiplied by y .

• vector<T, true> copy row (size type i) const
The function returns the copy of the i -th row.

Analogous operations are available also for matrix columns. The functions
names can be obtained from the names for row-oriented operations by substi-
tuting substring row for col .

The numeration of rows and columns begins with 0. A(i, j) is an entry of
matrix A in i-th row and j-th column.

Consider the operation involving a row/column and a entry in the same
row/column. For example we have to divide the i-th row by the entry A(i, j).
In this case it is necessary to use safe reference(A(i, j)) instead of A(i, j):

A.div row(i, safe reference(A(i, j)));

Analogous safety measure will be taken for polynomials.
Consider the following example.

Listing MatrixColumnRow.cpp

#include <arageli/arageli.hpp>

using namespace std ;

22

file:../bin/MatrixColumnRow.cpp

using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< rational<> > A;
vector< rational<> > b;

int k ;

A = "((-2/5, -1/5, 3/5, 1/2),"
"(2/5, -1/4, 2/6, 1/3),"
"(-5/2, 5/6, -6/7, 1/4))";

b = "(-2/3, 5/2, -1/6)";
k = 5;

cout << "A = " << endl ;
output aligned(cout, A);
cout << endl ;

cout << "The first row in A = " << A.copy row(0) << endl ;
cout << "The second row in A = " << A.copy row(1) << endl ;
cout << "The first column in A = " << A.copy col(0) << endl ;
cout << "The second column in A = " << A.copy col(1) << endl ;

cout << endl << "A[0] = " << k << "*A[1] (rows)" << endl ;
A.addmult rows(0, 1, k);
cout << "Result = " << endl ;
output aligned(cout, A);

cout << endl << "A[1] = A[1] / A(2, 1) (columns)" << endl ;
A.div col(1, safe reference(A(2, 1)));
cout << "Result = \n" << endl ;
output aligned(cout, A);

cout << endl << "Erase two columns = " << endl ;
A.erase cols(2, 2);
output aligned(cout, A);
cout << endl ;

cout << "Vector b = " << b << endl ;
cout << "Insert b into A = " << endl ;
A.insert col(2, b);
output aligned(cout, A);
cout << endl ;

A.swap rows(0, 2);
cout<<"Swap in A the first and the third rows = " << endl ;
output aligned(cout, A);

return 0;

23

}

The results follow:

A =
	-2/5 -1/5 3/5 1/2	
	2/5 -1/4 1/3 1/3	
	-5/2 5/6 -6/7 1/4	

The first row in A = (-2/5, -1/5, 3/5, 1/2)
The second row in A = (2/5, -1/4, 1/3, 1/3)
The first column in A = (-2/5, 2/5, -5/2)
The second column in A = (-1/5, -1/4, 5/6)

A[0] = 5*A[1] (rows)
Result =
	8/5 -29/20 34/15 13/6	
	2/5 -1/4 1/3 1/3	
	-5/2 5/6 -6/7 1/4	

A[1] = A[1] / A(2, 1) (columns)
Result =

	8/5 -87/50 34/15 13/6	
	2/5 -3/10 1/3 1/3	
	-5/2 1 -6/7 1/4	

Erase two columns =
	8/5 -87/50	
	2/5 -3/10	
	-5/2 1	

Vector b = (-2/3, 5/2, -1/6)
Insert b into A =
	8/5 -87/50 -2/3	
	2/5 -3/10 5/2	
	-5/2 1 -1/6	

Swap in A the first and the third rows =
	-5/2 1 -1/6	
	2/5 -3/10 5/2	
	8/5 -87/50 -2/3	

3.4.2 Other functions
In Arageli there is a few functions for determinig the matrix shape:

• is empty() checks whether the matrix is empty, i.e. the number of columns
or/and the number of rows is 0;

• is null() checks whether the matrix is of zeros;

24

• is unit() checks whether the matrix is identity;

• is opposite unit() checks whether the matrix is opposite to an identity
matrix;

• is square() checks whether the matrix is square;

• swap swaps two matrices.

3.5 Linear algebra
File <arageli/gauss.hpp> contains the definition of a few linear algebra func-
tions. Function rank returns the rank of a matrix. For a square matrix functions
det and inverse find the determinant and the inverse matrix correspondingly. If
a matrix is degenerated then inverse ejects exception Arageli ::matrix is singular .
These function works only with matrices whos entries are from a field, for ex-
ample, with rational matrices. If you want to find the rank or the determinant
of an integer matrix you can use functions rank int and det int correspondingly.

Consider the following example.

Listing MatrixGauss.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< rational<> > A, A inv ;
rational<> d ;

A = "((2/3, -3/5, 1) , (-4/7, 5/8, 1/12) , (-3, 5, -6/7))";

cout << "A = " << endl ;
output aligned(cout, A, "| | ", " | |", " ");
cout << endl ;

if (A.is square())
{

d = det(A);
cout << "det(A) = " << d << endl << endl ;

if (d != 0)
{

A inv = inverse(A);

cout << "Inverse to A = " << endl ;
output aligned(cout, A inv, "| | ", " | |", " ");
cout << endl << "The result is " << boolalpha

25

file:../bin/MatrixGauss.cpp

<< (A*A inv).is unit() << endl << endl ;
}

}

matrix< big int > B ;
big int delta;

B = "((1, 2, 3) , (3, 2, 3) , (0, 1, 3))";

cout << "B = " << endl ;
output aligned(cout, B, "| | ", " | |", " ");
cout << endl ;

if (B.is square())
{

delta = det int(B);
cout << "det(B) = " << delta << endl ;

}

return 0;
}

Results follow:

A =
	2/3 -3/5 1	
	-4/7 5/8 1/12	
	-3 5 -6/7	

det(A) = -4139/3528

Inverse to A =
	3360/4139 -79128/20695 11907/20695	
	2610/4139 -8568/4139 2212/4139	
	3465/4139 27048/20695 -1302/20695	

The result is true

B =
	1 2 3	
	3 2 3	
	0 1 3	

det(B) = -6

We remark that this example is not written using the best technique because
both det and inverse call the same function rref . Function rref finds the row
reduced echelon form of A.

Listing MatrixRref.cpp

#include <arageli/arageli.hpp>

26

file:../bin/MatrixRref.cpp

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< rational<> > A, A inv, B ;
vector< rational<> > basis;
rational<> d = 0;

A = "((2/3, -3/5, 1) , (-4/7, 5/8, 1/12) , (-3, 5, -6/7))";

cout << "A = " << endl ;
output aligned(cout, A, "| | ", " | |", " ");
cout << endl ;

rref (A, B, A inv, basis, d);

cout << "The row reduced echelon form of A = " << endl ;
output aligned(cout, B, "| | ", " | |", " ");
cout << endl ;

cout << "The inverse to A = " << endl ;
output aligned(cout, A inv, "| | ", " | |", " ");
cout << endl ;

cout << "det(A) = " << d << endl << endl ;

cout << "The result is " << boolalpha << (A*A inv).is unit();

return 0;
}

Results follow:

A =
	2/3 -3/5 1	
	-4/7 5/8 1/12	
	-3 5 -6/7	

The row reduced echelon form of A =
	1 0 0	
	0 1 0	
	0 0 1	

The inverse to A =
	3360/4139 -79128/20695 11907/20695	
	2610/4139 -8568/4139 2212/4139	
	3465/4139 27048/20695 -1302/20695	

27

det(A) = -4139/3528

The result is true

For integer matrix one have to use rref int instead of rref .
Function solve linsys(A, b) solves the square system of linear equations Ax =

b. If A is degenerate the the exception Arageli ::matrix is singular is ejected.
The function is also defined in <arageli/gauss.hpp>.

Listing MatrixLinearSystem.cpp

/*
Solving the system of linear equations $Ax=b$,
$ A = \left(\begin{array}{rrr} -1/2 & 2/3 & 3/6 \\ 5/7 & -6 & 7/5\\ -8/11 & 9/2 & -11\end{array}\right)$,
$ b = \left(\begin{array}{ccc} 2/3 \\ -1/5 \\ 4 \end{array}\right)$
*/

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< rational<> > A;
vector<rational<> > b,x ;

A = "((-1/2, 2/3, 3/6), (5/7, -6, 7/5), (-8/11, 9/2, -11))";
b = "(2/3, -1/5, 4)";

cout << "A = " << endl ;
output aligned(cout, A);
cout << endl ;
cout << "b = " << endl ;
output aligned(cout, b);
cout << endl ;

try
{

x = solve linsys(A, b);

cout << "x = " << endl ;
output aligned(cout, x);
cout << endl ;
cout << "The result is " << boolalpha << (A*x == b) << endl ;

}
catch(matrix is singular)
{

cout << "Error! Matrix is singular!" << endl ;
}

28

file:../bin/MatrixLinearSystem.cpp

return 0;
}

A =
	-1/2 2/3 1/2	
	5/7 -6 7/5	
	-8/11 9/2 -11	

b =
	2/3	
	-1/5	
	4	

x =
	-247709/119498	
	-17591/59749	
	-41469/119498	

The result is true

3.6 Smith’s normal diagonal form for integer ma-
trix

Listing MatrixSmith.cpp

#include <arageli/arageli.hpp>

// Smith’s normal diagonal form

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< big int > A, B, P, Q ;
size t rk ;
big int d ;

A = "((1, 2, 3), (3, 2, 3), (0, 1, 3))";

cout << "A = " << endl ;
output aligned(cout, A, "| | ", " | |", " ");
cout << endl ;

smith(A, B, P, Q, rk, d);

29

file:../bin/MatrixSmith.cpp

cout << "B = " << endl ;
output aligned(cout, B, "| | ", " | |", " ");
cout << endl ;

cout << "P = " << endl ;
output aligned(cout, P, "| | ", " | |", " ");
cout << endl ;

cout << "Q = " << endl ;
output aligned(cout, Q, "| | ", " | |", " ");
cout << endl ;

cout << "det(A) = " << d << endl ;
cout << "det(B) = " << det int(B) << endl ;
cout << "det(P) = " << det int(P) << endl ;
cout << "det(Q) = " << det int(Q) << endl ;
cout << "B == P*A*Q: it’s " << boolalpha << (B == P*A*Q) << endl ;

return 0;
}

A =
	1 2 3	
	3 2 3	
	0 1 3	

B =
	1 0 0	
	0 1 0	
	0 0 6	

P =
	1 0 0	
	0 0 1	
	-3 1 4	

Q =
	1 -2 3	
	0 1 -3	
	0 0 1	

det(A) = -6
det(B) = 6
det(P) = -1
det(Q) = 1
B == P*A*Q: it’s true

30

Chapter 4

Sparse Polynomials

4.1 Creation
A polynomial with great amount of zero coefficients is called sparse. Ara-
geli has great possibilities for dealing with sparse polynomials. In Arageli
The sparse polynomial is a templated class sparse polynomdefined in <arageli/
sparse_polynom.hpp>. This class represents a polynomial as a list of non-zero
monomials. Their parameters define the type of coefficients (Coefficient) and
the tipe of degrees (Degree). Also there is a boolean parameter to conrol the
system of reference counter:

template<typename Coefficient,
typename Degree = int,
bool REFERENCE COUNTER = true>

class sparse polynom;

Here we’ll define only the first parameter. For two other parameters we will use
the default values. For example, definitions

sparse polynom<int> a;
sparse polynom<rational<> > b;

introduce variables a and b. Polynomial a has integer coefficients while b has
rational polynomials.

Consider polynomial constructors:

• sparse polynom()
creates zero polynomial (it has no non-zero monomials);

• sparse polynom(const char* str);
defines a polynomial by meens of its string representation; polynomials
are written in the form similar to mathematical notation;

• sparse polynom(const Coefficient& a);
creates a polynomial with the only monomial x of zero degree;

• sparse polynom(const Coefficient& a, const Degree& p);
creates a polynomial with the only monomial axp;

31

• template <typename Coefficient1, typename Degree1>
sparse polynom(const monom<Coefficient1, Degree1>& m);

creates a polynomial equal to monomial m;

• template <typename Coefficient1, typename Degree1,
bool REFCNT1>

sparse polynom
(const sparse polynom<Coefficient1,Degree1,REFCNT1>& x);

creates a polynomial equal to another polynomial;

Consider the following example:

Listing SparsePolynomCreation.cpp

#include "arageli/arageli.hpp"

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

// Let’s create some polynomials
sparse polynom<int> S = "2*x^2+5*x-7+3*x";
cout << "An integer polynomial = "

<< endl << S << endl << endl ;

sparse polynom<big int>
B = "1234567891011121314151617181920*x^777"

"+112233445566778899";
cout << "A big integer polynomial = "

<< endl << B << endl << endl ;

sparse polynom<double>
D = "1.12345*x-1e25*x^2+1234.5678*x^3-0.000002334";

cout << "A real polynomial = "
<< endl << D << endl << endl ;

sparse polynom<rational<> >
R = "1234/56781*x^321+7/9*x+3*x^2-4/256";

cout << "Rational polynomial = "
<< endl << R << endl << endl ;

// It is posible to create a polynomial with matrix coefficients
// Pay attention to extra parentheses
sparse polynom<matrix<int> > M =

"(((1,2),(3,4))*x^55-((1,2),(4,5))*x+((5,-1),(4,0)))";
cout << "Polynomial with matrix coefficients = "

<< endl << M << endl << endl ;

// Now let’s create a polynomial from separate monomials
big int num = 1, den = 1;

32

file:../bin/SparsePolynomCreation.cpp

int degree = 0;
sparse polynom<rational<> > F ;

for(int i = 0; i < 6; i++)
{

F += sparse polynom<rational<> >::
monom(rational<>(num, den), degree);

degree++;
num += den;
den += num;

}
cout << "A polynomial constructed from separate monomials = "

<< endl << F << endl << endl ;

// Converting types of polynomials
sparse polynom<big int> BD = D ;
cout << "A polynomial converted from another = "

<< endl << BD << endl << endl ;

sparse polynom<double> FR = R;
cout << "A polynomial converted from another = "

<< endl << FR << endl << endl ;

return 0;
}

An integer polynomial =
2*x^2+8*x-7

A big integer polynomial =
1234567891011121314151617181920*x^777+112233445566778899

A real polynomial =
1234.57*x^3-1e+025*x^2+1.12345*x-2.334e-006

Rational polynomial =
1234/56781*x^321+3*x^2+7/9*x-1/64

Polynomial with matrix coefficients =
((1, 2), (3, 4))*x^55+((-1, -2), (-4, -5))*x+((5, -1), (4, 0))

A polynomial constructed from separate monomials =
89/144*x^5+34/55*x^4+13/21*x^3+5/8*x^2+2/3*x+1

A polynomial converted from another =
1234*x^3-10000000000000000905969664*x^2+x

A polynomial converted from another =
0.0217326*x^321+3*x^2+0.777778*x-0.015625

33

4.2 Input and output of polynomials
Input and output of polynomials from/into streams are supported. Polynomials
are written in the form similar to mathematical notation. The rules are the
same as in constructing from the string representation:

• polynomial must be written without spaces;

• independent variable is always x ;

• the degree is separeted from x with ^;

• symbol * bitween a coefficient and x is necessary;

• the order of monomials is arbitrary;

• you can use monomials with the same degree;

• if coefficients are of standard classes of C++ then they are written con-
forming to the rules of C++; if they are of Arageli classes then they
must be written conforming the Arageli rules.

• if the first coefficient is in paretheses then the entire polynomial must be
in parenthese; otherwise the parenthesis can be omitted.

For example, the string x^3+3*x^2+3*x+1 corresponds to usual mathemat-
ical formula x3 + 3x2 + 3x + 1.

Usually Arageli stores any polynomial in a canonical form, i.e.

• monomials are in the degree decreasing order;

• similar terms are reduced;

• monomials with zero coefficients are excluded;

Listing SparsePolynomInputOutput.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<int> S ;
cout << "Enter a polynomial with integer coefficients "

<< endl << endl ;

cin >> S ; // 5*x^2-7*x^6+5+x^8-3*x^2+0*x

cout << "Standard form: " << S << endl ;

return 0;
}

34

file:../bin/SparsePolynomInputOutput.cpp

Enter a polynomial with integer coefficients

Standard form: x^8-7*x^6+2*x^2+5

4.3 Arithmetic operations
In Arageli arithmetical operations involving polynomials are written using
habitual symbols:

• + performs addition,

• − performs subtraction,

• * performs multiplication,

• / finds the quotient,

• % finds the remainder.

Each of these opeartions has a pair one combined with assignment: +=, −= etc..
In addition to arithmetic operations involving two polynomials there supported
operations involving a polynomial and a monomial and operations involving a
polynomial and a scalar.

Listing SparsePolynomOperations.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<rational<> > f = "1/15*x^4+5/7*x^3+7*x";
sparse polynom<rational<> > g = "20/53*x^3-1/9*x-1/8";
sparse polynom<rational<> > h = "2/5*x^2+5/7*x-7/8";

cout << "f = " << f << endl ;
cout << "g = " << g << endl ;
cout << "h = " << h << endl << endl ;

cout << "f + g * h = " << f + g * h << endl << endl ;
cout << "Division: f = q*h + r where" << endl ;
sparse polynom<rational<> > q = f /h;
sparse polynom<rational<> > r = f %h;

cout << "q = " << q << endl ;
cout << "r = " << r << endl ;
// Check the result
cout << "It’s " << boolalpha << (f == q*h + r) << endl << endl ;

typedef sparse polynom<rational<> >::monom ratmonom;

35

file:../bin/SparsePolynomOperations.cpp

// Operations involving monomilas and scalars

cout << "Let’s divide f by x: " << endl << "f = "
<< (f /= ratmonom(1, 1)) << endl << endl ;

cout << "Let’s divide f and g by their leading coefficients:" << endl ;
cout << "f = " << (f /= rational<>(20, 53)) << endl ;
cout << "g = " << (g /= rational<>(1, 15)) << endl << endl ;
cout << "Now f - g = " << f − g << endl ;

return 0;
}

f = 1/15*x^4+5/7*x^3+7*x
g = 20/53*x^3-1/9*x-1/8
h = 2/5*x^2+5/7*x-7/8

f + g * h = 8/53*x^5+1871/5565*x^4+11341/33390*x^3-163/1260*x^2+883/126*x+7/64

Division: f = q*h + r where
q = 1/6*x^2+125/84*x-3595/1568
r = 10228/1029*x-3595/1792
It’s true

Let’s divide f by x:
f = 1/15*x^3+5/7*x^2+7

Let’s divide f and g by their leading coefficients:
f = 53/300*x^3+53/28*x^2+371/20
g = 300/53*x^3-5/3*x-15/8

Now f - g = -87191/15900*x^3+53/28*x^2+5/3*x+817/40

4.4 Polynomial properties
Function is normal() checks whether the polynomial is in canonical represen-
tations or not. Usually any polynomial is always in its canonical form. The
only case when this form can be disturbed is after you have manipulated their
internal representation (see the next section). In this case you have to call
normalize().

is null() checks the condition p = 0.
is x () checks the condition p = x where x is independent variable.
is const() checks whether the polynomial is scalar or not.
Function degree() returns the degree of the polynomial; functions leading coef ()

returns the leading coefficient; and leading monom() returns the leading mono-
mial; size() returns the number of non-zero monomials in the polynomial.

subs(Coefficient& x) finds the value of the polynomial in the point x.

Listing SparsePolynomProperties.cpp

36

file:../bin/SparsePolynomProperties.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<rational<> > S =
"2/55*x^55+5/567*x^28-56/997*x^5+1/18122005*x^2+567";

cout << "S = " << S << endl << endl ;

if (S.is normal())
cout << "S is in canonical form" << endl ;

else
{

cout << "S is not in canonical form!" << endl ;
// This would mean that there is a bug in Arageli!
S.normalize();

}

if (S.is null())
cout << "S = 0" << endl ;

else
cout << "S is not zero" << endl ;

if (S.is x ())
cout << "S = x" << endl ;

else
cout << "S is not x" << endl ;

if (S.is const())
cout << "S is rational number" << endl ;

else
cout << "S is not a scalar" << endl ;

// Two ways to determine the leading coefficient
cout << "The leading coefficient is "

<< S.leading coef () << " = "
<< S.leading monom().coef () << endl ;

// Two ways to determine the degree of the polynomial
cout << "The degree of S is "

<< S.degree() << " = "
<< S.leading monom().degree() << endl ;

// The value of the polynomial at the point
cout << "S(1/2) = " << S.subs(rational<>(1,2)) << endl ;
cout << "S(0) = " << S.subs(rational<>(0)) << endl ;

return 0;

37

}

S = 2/55*x^55+5/567*x^28-56/997*x^5+1/18122005*x^2+567

S is in canonical form
S is not zero
S is not x
S is not a scalar
The leading coefficient is 2/55 = 2/55
The degree of S is 55 = 55
S(1/2) = 104637159911036663774405277796553/184545826870304546417100718080
S(0) = 567

4.5 Manipulating with internal representation
Sometimes we have to get an access to internal representation of a polynomial.
Arageli allows us to manipulate with separate monomials. We pay attention to
that after all such manipulations one must call normalize() to set the canonical
representation of the polynomial.

The iterators technique analogouse to one in STL is supported in Arage-
li. This technique allows us to consider a polynomial as a list of its monomials.
There are 3 kinds of iterators. Each of these 3 kinds can have constant form and
non-constatn form. These iterators work with the list of monomials and sepa-
rately with lists of coefficients and degrees. You can insert and erase monomials
by means of functions:

monom iterator insert(monom iterator pos, const Arageli ::monom<F1, I1>& x);

monom iterator erase(monom iterator pos);

The former inserts the monomial before the position specified by the iterator.
The later erases the monomial specified by the iterator.

The following example show how one can use this technique.

Listing SparsePolynomIterator.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

typedef sparse polynom<big int> poly ;
typedef poly::coef iterator coefs;
typedef poly::degree iterator degrees;
typedef poly::monom const iterator monoms;

poly S = "213*x^3443+532*x^4432-744*x^44-4235*x^15+292*x+34254";
cout << "S = " << S << endl << endl ;

38

file:../bin/SparsePolynomIterator.cpp

// Let’s find the minimal non-zero coefficient
big int min coeff = S.leading coef ();
for(coefs ci = S.coefs begin(), cj = S.coefs end(); ci != cj ; ++ci)

if(min coeff > *ci) min coeff = *ci ;
cout << "Minimal non-zero coefficient in S is " << min coeff

<< endl << endl ;

// Find the sum of all degrees of S
// We’ll use the STL algorithms
int dsum = std::accumulate(S.degrees begin(), S.degrees end(), 0);
cout << "The sum of all degrees of S is "

<< dsum << endl << endl ;

// Pick out all monomials with odd degrees
poly oddS ;
for(monoms mi = S.monoms begin(), mj = S.monoms end(); mi != mj ; ++mi)

if(is odd(mi−>degree()))
oddS.insert(oddS.monoms end(), *mi);

cout << "The polynomial with only odd degrees = " << oddS << endl << endl ;

// Replace all degrees by their residues modulo 5
for(degrees di = S.degrees begin(), dj = S.degrees end(); di != dj ; ++di)

*di %= 5;

// Now S can contain monomials this equal degrees
// We have to reduce S to its canonical form
S.normalize();
cout << "All degrees modulo 5 = " << S << endl << endl ;

return 0;
}

S = 532*x^4432+213*x^3443-744*x^44-4235*x^15+292*x+34254

Minimal non-zero coefficient in S is -4235

The sum of all degrees of S is 7935

The polynomial with only odd degrees = 213*x^3443-4235*x^15+292*x

All degrees modulo 5 = -744*x^4+213*x^3+532*x^2+292*x+30019

4.6 Other operations
For a set of operations such as computing opposite, swapping, comparing Ara-
geli provides a common interface and polynomials not are an exception.

39

sparse polynom<T> opposite(sparse polynom<T> p) returns opposite poly-
nomial.

cmp(sparse polynom<T1> first, sparse polynom<T2> second) performs lex-
icographic comparing.

swap(sparse polynom<T> first, sparse polynom<T> second) swaps poly-
nomials.

Consider the following example:

Listing SparsePolynomOtherOperations.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<rational<> >
P = "1/2*x^8-47/12*x^7-359/84*x^5+349/126*x^4+94/9*x^3+55/14*x^2+10*x",
Q = "-99/13*x^7+834/13*x^6-141/4*x^5+22171/390*x^4-5699/180*x^3+2*x";

cout << "P = " << P << endl ;
cout << "Q = " << Q << endl << endl ;

int P vs Q = cmp(P,Q);
if (P vs Q < 0) cout << "P < Q" << endl ;
if (P vs Q > 0) cout << "P > Q" << endl ;
if (P vs Q == 0) cout << "P == Q" << endl ;

int P vs P = cmp(P,P);
if (P vs P < 0) cout << "P < P" << endl ;
if (P vs P > 0) cout << "P > P" << endl ;
if (P vs P == 0) cout << "P == P" << endl ;
cout << endl ;

cout << "Before swapping P and Q:" << endl ;
cout << "P = " << P << endl ;
cout << "Q = " << Q << endl << endl ;
swap(P, Q);
cout << "After swapping:" << endl ;
cout << "P = " << P << endl ;
cout << "Q = " << Q << endl << endl ;

cout << "-P = " << opposite(P) << endl ;

return 0;
}

P = 1/2*x^8-47/12*x^7-359/84*x^5+349/126*x^4+94/9*x^3+55/14*x^2+10*x
Q = -99/13*x^7+834/13*x^6-141/4*x^5+22171/390*x^4-5699/180*x^3+2*x

40

file:../bin/SparsePolynomOtherOperations.cpp

P > Q
P == P

Before swapping P and Q:
P = 1/2*x^8-47/12*x^7-359/84*x^5+349/126*x^4+94/9*x^3+55/14*x^2+10*x
Q = -99/13*x^7+834/13*x^6-141/4*x^5+22171/390*x^4-5699/180*x^3+2*x

After swapping:
P = -99/13*x^7+834/13*x^6-141/4*x^5+22171/390*x^4-5699/180*x^3+2*x
Q = 1/2*x^8-47/12*x^7-359/84*x^5+349/126*x^4+94/9*x^3+55/14*x^2+10*x

-P = 99/13*x^7-834/13*x^6+141/4*x^5-22171/390*x^4+5699/180*x^3-2*x

4.7 Basic algorithms
Arageli implements basic algebraic algorithms involving polynomials: diff
performs the symbolic differentiation, gcd and lcm find the GCD and LCM
of two polynomials correspondingly, euclid bezout finds Bezout’s coefficients,
is coprime checks whether polynomials are coprime or not.

Listing SparsePolynomAlgorithms.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<rational<> >
P = "x^6+x^4-x^2-1",
Q = "x^3-2*x^2-x+2";

cout << "P = " << P << endl ;
cout << "Q = " << Q << endl << endl ;

if (is coprime(P, Q))
cout << "P and Q are coprime" << endl << endl ;

else
cout << "P and Q are not coprime" << endl << endl ;

sparse polynom<rational<> > dP = diff (P);
cout << "The first derivative dP/dx = " << dP << endl ;
cout << "The second derivative d2P/dx2 = " << diff (dP) << endl << endl ;

cout << "GCD(P, Q) = " << gcd(P, Q) << endl ;
cout << "LCM(P, Q) = " << lcm(P, Q) << endl << endl ;

sparse polynom<rational<> > U, V, pq ;
pq = euclid bezout(P, Q, U, V);

41

file:../bin/SparsePolynomAlgorithms.cpp

cout << "U = " << U << endl ;
cout << "V = " << V << endl << endl ;
cout << "Check for gcd(P, Q) == P*U + Q*V: ";
cout << boolalpha << (pq == P*U + Q*V);

return 0;
}

P = x^6+x^4-x^2-1
Q = x^3-2*x^2-x+2

P and Q are not coprime

The first derivative dP/dx = 6*x^5+4*x^3-2*x
The second derivative d2P/dx2 = 30*x^4+12*x^2-2

GCD(P, Q) = x^2-1
LCM(P, Q) = x^7-2*x^6+x^5-2*x^4-x^3+2*x^2-x+2

U = 1/25
V = -1/25*x^3-2/25*x^2-6/25*x-12/25

Check for gcd(P, Q) == P*U + Q*V: true

4.8 Smith’s normal diagonal form for polynomial
matrix

Listing SparsePolynomMatrixSmith.cpp

#include <arageli/arageli.hpp>

// Smith’s normal diagonal form

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

matrix< sparse polynom<rational<> > > A, B, P, Q ;
size t rk ;
sparse polynom<rational<> > d ;

A = "((x+1,x-1), (x-2,x+1))";

cout << "A = " << endl ;
output aligned(cout, A, "| | ", " | |", " ");
cout << endl ;

42

file:../bin/SparsePolynomMatrixSmith.cpp

smith(A, B, P, Q, rk, d);

cout << "B = " << endl ;
output aligned(cout, B, "| | ", " | |", " ");
cout << endl ;

cout << "P = " << endl ;
output aligned(cout, P, "| | ", " | |", " ");
cout << endl ;

cout << "Q = " << endl ;
output aligned(cout, Q, "| | ", " | |", " ");
cout << endl ;

cout << "det(A) = " << d << endl ;
cout << "det(B) = " << det int(B) << endl ;
cout << "det(P) = " << det int(P) << endl ;
cout << "det(Q) = " << det int(Q) << endl ;
cout << "B == P*A*Q: it’s " << boolalpha << (B == P*A*Q) << endl ;

return 0;
}

A =
|| x+1 x-1 ||
|| x-2 x+1 ||

B =
|| 1 0 ||
|| 0 x-1/5 ||

P =
|| 0 1/3 ||
|| 3/5 2/5 ||

Q =
|| -1 1/3*x+1/3 ||
|| 1 -1/3*x+2/3 ||

det(A) = 5*x-1
det(B) = x-1/5
det(P) = -1/5
det(Q) = -1
B == P*A*Q: it’s true

43

4.9 Example: matrix polynomial ↔ polynomial
matrix conversion

Listing SparsePolynomMatrix.cpp

#include <arageli/arageli.hpp>

// $ \left(\begin{array}{rrr} 3 & -5 \\ 0 & 7 \end{array}\right) x^8 + \left(\begin{array}{rrr} 0 & 1 \\ 0 & -8 \end{array}\right) x^3 + \left(\begin{array}{rrr}-1 & 9 \\ 13 & 2 \end{array}\right) \leftrightarrow$
// $ \left(\begin{array}{ccc} 3x^8-1 & -5x^8+x^3+9 \\ 13 & 7x^8-8x^3+2 \end{array}\right)$

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

sparse polynom<matrix<int> >
f = "(((3,-5),(0,7))*x^8+((0,1),(0,-8))*x^3+((-1,9),(13,2)))";

matrix<sparse polynom<int> >
x = "((x,0),(0,x))";

cout << "f(x) = " << f << endl << endl ;
cout << "Let x = " << x << endl << endl ;
cout << "Then the resulting matrix is" << endl ;

output aligned(cout, f.subs(x), "| | ", " | |", " ");

return 0;
}

f(x) = ((3, -5), (0, 7))*x^8+((0, 1), (0, -8))*x^3+((-1, 9), (13, 2))

Let x = ((x, 0), (0, x))

Then the resulting matrix is
|| 3*x^8-1 -5*x^8+x^3+9 ||
|| 13 7*x^8-8*x^3+2 ||

4.10 Example: interpolating polynomial
Consider the problem of constructing Lagrange interpolating polynomial. We
don’t think that we’ve implemented the best way to determine coefficients of an
interpolating polynomial. The code must be considered only as illustration of
using Arageli functions.

Listing SparsePolynomLagrange.cpp

#include <arageli/arageli.hpp>

using namespace std ;

44

file:../bin/SparsePolynomMatrix.cpp
file:../bin/SparsePolynomLagrange.cpp

using namespace Arageli ;

sparse polynom<rational<> > Lagrange(rational<> *x, rational<> *y, int n)
{

rational<> tmpDenom; // denominator
sparse polynom<rational<> > poly, // result

tmpPolyNumer(1), // numerator
mono("x");

// a blank for numerator
for (int i = 0; i < n; i++)

tmpPolyNumer *= mono − x [i];

for (int j = 0; j < n; j++)
{

// computing a denominator
tmpDenom = 1;
for (int k = 0; k < n; k++)

if (k != j)
tmpDenom *= x [j]−x [k];

// next addand
poly += (tmpPolyNumer / (mono − x [j])) * (y [j] / tmpDenom);

}

return poly ;
}

int main(int argc, char *argv [])
{

int n = 7;
rational<> x [] = {0, 1, 2, 3, 4, 5, 6};
rational<> y [] = {rational<>(1,3), −1, 0, 6, 7, −3, −7};

sparse polynom<rational<> > L = Lagrange(x, y, n);

cout << "Interpolating polynomial" << endl << "L(x) = " << L << endl << endl ;

cout << "Let’s check it" << endl ;

bool ok = true;

for (int i = 0; i < n; i++)
{

rational<> yy = L.subs(x [i]);
cout << "L(" << x [i] << ") = " << yy << endl ;

if (yy != y [i])
{

ok = false;

45

cout << "Error!" << endl ;
}

}

if (ok)
cout << "All is Ok" << endl ;

return 0;
}

Interpolating polynomial
L(x) = 7/2160*x^6+13/144*x^5-709/432*x^4+1115/144*x^3-12991/1080*x^2+9/2*x+1/3

Let’s check it
L(0) = 1/3
L(1) = -1
L(2) = 0
L(3) = 6
L(4) = 7
L(5) = -3
L(6) = -7
All is Ok

4.11 Example: finding all rational roots
Let’s implement the classical method for finding all rational roots of a poly-
nomial due to Kroneker. The method is very slow and the code have to be
considered only as an example of using Arageli functions.

Listing SparsePolynomKroneker.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;
using Arageli::vector ;

bool findoneroot(sparse polynom<rational<> > &poly, big int &num, big int &den)
{

// Factorization
vector<big int> num factorization, den factorization;
factorize(num < 0 ? −num : num, num factorization);
factorize(den < 0 ? −den : den, den factorization);

// All combinations of numerators and denominators
// Substitute them into poly
big int den variants = power(2, den factorization.size()),

num variants = power(2, num factorization.size());
typedef vector<big int>::iterator pfactor ;

46

file:../bin/SparsePolynomKroneker.cpp

for(big int den mask = 0; den mask <= den variants; ++den mask)
for(big int num mask = 0; num mask <= num variants; ++num mask)

{
// Constructin a numerator
big int j = num mask ;
big int trial num = 1;

for(pfactor factor = num factorization.begin(),
end = num factorization.end();

factor != end && j != 0; ++factor)
{

if(j.is odd()) trial num *= *factor ;
j >>= 1;

}

// Constructing a denomiator
big int i = den mask ;
big int trial den = 1;
for(pfactor factor = den factorization.begin(),

end = den factorization.end();
factor != end && i != 0; ++factor)

{
if(i.is odd()) trial den *= *factor ;
i >>= 1;

}

// Substitute a trial root into poly
if(poly.subs(rational<>(trial num,trial den)) == 0)
{

num = trial num;
den = trial den;
return true;

}

if(poly.subs(rational<>(−trial num,trial den)) == 0)
{

num = −trial num;
den = trial den;
return true;

}
}
return false;

}

void findroots(sparse polynom<rational<> > poly, vector<rational<> > &ret)
{

ret.resize(0); // for the present there are no roots found

// First find zero roots

47

while(poly.subs(rational<>(0)) == 0)
{

ret.push back(rational<>(0,1));
poly /= sparse polynom<rational<> >(rational<>(1,1),1);

}

if (poly.is const()) return;

// Find common denominator
typedef sparse polynom<rational<> >::monom iterator pmonom;
big int nok = 1;
for (pmonom i = poly.monoms begin(), j = poly.monoms end(); i != j ; ++i)

nok *= i−>coef ().denominator() / gcd(nok,i−>coef ().denominator());
for (pmonom i = poly.monoms begin(), j = poly.monoms end(); i != j ; ++i)

i−>coef () *= nok ;

big int num = poly.monoms begin()−>coef ().numerator();
big int den = (−−poly.monoms end())−>coef ().numerator();

// Find all roots
while(!poly.is const() && findoneroot(poly, num, den))
{

// Store tye root found
ret.push back(rational<>(num, den));

// Reduce the degree of the polynomial
sparse polynom<rational<> > tmp(rational<>(den, 1), 1);
tmp += rational<>(−num, 1);
poly /= tmp;

// Take numerator and denominator for the next root
num = poly.monoms begin()−>coef ().numerator();
den = (−−poly.monoms end())−>coef ().numerator();

}
}

int main(int argc, char *argv [])
{

sparse polynom<rational<> > P =
"x^7+167/15*x^6-221/20*x^5-91/12*x^4+27/10*x^3+6/5*x^2";

cout << "P = " << P << endl << endl ;

vector<rational<> > roots;
findroots(P,roots);

cout << "Rational roots: " << roots << endl ;
return 0;

}

48

P = x^7+167/15*x^6-221/20*x^5-91/12*x^4+27/10*x^3+6/5*x^2

Rational roots: (0, 0, -12, 1/2, -1/2, -1/3, 6/5)

49

Chapter 5

Modular arithmetic

5.1 Creation

Listing Residue.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{
{

// Working in ${\bf Z}\sb{5} = {\bf Z}/5{\bf Z}$

residue<int> a = "2 (mod 5)";
residue<int> b = "3 (mod 5)";

cout << "a = " << a << endl ;
cout << "b = " << b << endl ;
cout << "a + b = " << a + b << endl ;
cout << "a - b = " << a − b << endl ;
cout << "a * b = " << a * b << endl ;
cout << "a / b = " << a / b << endl << endl ;

}

{
// Working in ${\bf Q}/(x^2 + 1){\bf Q}$

typedef residue<sparse polynom<rational<> > > T ;

T a = "((1+x) (mod (x^2+1)))";
T b = "((1-x) (mod (x^2+1)))";

cout << "a = " << a << endl ;
cout << "b = " << b << endl ;

50

file:../bin/Residue.cpp

cout << "a + b = " << a + b << endl ;
cout << "a - b = " << a − b << endl ;
cout << "a * b = " << a * b << endl ;
cout << "a / b = " << a / b << endl << endl ;

}

{
// Working in ${\bf Z}\sb{3}/(x^2 + 1){\bf Z}\sb{3}$

typedef residue<sparse polynom<residue<int> > > T ;

T a = "(((1(mod 3))*x+(1(mod 3))) (mod ((1(mod 3))*x^2+(1(mod 3)))))";
T b = "(((1(mod 3))*x+(2(mod 3))) (mod ((1(mod 3))*x^2+(1(mod 3)))))";

cout << "a = " << a << endl ;
cout << "b = " << b << endl ;
cout << "a + b = " << a + b << endl ;
cout << "a - b = " << a − b << endl ;
cout << "a * b = " << a * b << endl ;
cout << "a / b = " << a / b << endl << endl ;

}

return 0;
}

a = 2(mod 5)
b = 3(mod 5)
a + b = 0(mod 5)
a - b = 4(mod 5)
a * b = 1(mod 5)
a / b = 4(mod 5)

a = x+1(mod x^2+1)
b = -x+1(mod x^2+1)
a + b = 2(mod x^2+1)
a - b = 2*x(mod x^2+1)
a * b = 2(mod x^2+1)
a / b = x(mod x^2+1)

a = x+1(mod +3)(mod x^2+1(mod +3))
b = x+2(mod +3)(mod x^2+1(mod +3))
a + b = 2(mod 3)*x(mod x^2+1(mod +3))
a - b = 2(mod 3)(mod x^2+1(mod +3))
a * b = 1(mod 3)(mod x^2+1(mod +3))
a / b = 2(mod 3)*x(mod x^2+1(mod +3))

51

5.2 Linear algebra over finite field

Listing ResidueLinearSystem.cpp

#include <arageli/arageli.hpp>

using namespace std ;
using namespace Arageli ;

int main(int argc, char *argv [])
{

typedef residue<int> T ;

int mod = 7;

matrix<T> A = "((3, 1, 2), (1, 2, 3), (4, 3, 2))";
vector<T> b = "(1, 1, 1)";
vector<T> x ;

for(matrix<T>::iterator i = A.begin(); i < A.end(); ++i)
{

i−>module() = mod ;
i−>normalize();

}

for(matrix<T>::iterator i = b.begin(); i < b.end(); ++i)
{

i−>module() = mod ;
i−>normalize();

}

cout << "A = " << endl ;
output aligned(cout, A);
cout << endl ;

cout << "b = " << endl ;
output aligned(cout, b);
cout << endl ;

try
{

x = solve linsys(A, b);

cout << "x = " << endl ;
output aligned(cout, x);
cout << endl ;
cout << "Check the result: " << boolalpha << (A*x == b) << endl ;

}
catch(matrix is singular)
{

52

file:../bin/ResidueLinearSystem.cpp

cout << "Error! Matrix is singular!" << endl ;
}

return 0;
}

A =
	3(mod 7) 1(mod 7) 2(mod 7)	
	1(mod 7) 2(mod 7) 3(mod 7)	
	4(mod 7) 3(mod 7) 2(mod 7)	

b =
	1(mod 7)	
	1(mod 7)	
	1(mod 7)	

x =
	2(mod 7)	
	6(mod 7)	
	5(mod 7)	

Check the result: true

53

	Introduction
	Big Integers and Fractions
	Creation, input, output
	Arithmetical and other operations
	Basic algorithms involving integers

	Vectors and Matrices
	Creation, input, output
	Matrix algebra
	Entry-wise operations under vectors
	Operations with entries of vectors
	Entry-wise comparing of vectors
	LCM and GCD for vector entries

	Matrix operations
	Operations involving rows and columns
	Other functions

	Linear algebra
	Smith's normal diagonal form for integer matrix

	Sparse Polynomials
	Creation
	Input and output of polynomials
	Arithmetic operations
	Polynomial properties
	Manipulating with internal representation
	Other operations
	Basic algorithms
	Smith's normal diagonal form for polynomial matrix
	Example: matrix polynomial polynomial matrix conversion
	Example: interpolating polynomial
	Example: finding all rational roots

	Modular arithmetic
	Creation
	Linear algebra over finite field

